
TEL2 Vacuum Interlock
Local application
Thu, Dec 21, 2006

A system of providing data for Tevatron vacuum that is needed for interlocking Tevatron electron
lens beam is interfaced via the CEC protocol. A local application is needed to support this
connection. It may be called TELV. (Another local application that used this same protocol for
access to correction magnet power supply voltages was named CECV.) This note describes how
TELV can work. A document written by Greg Saewert, called TEL2 Vacuum Interlock Chassis,
describes the hardware interface for the related data.

The data accessed via CEC using TypeCode 0 consists of an array of 5 (including one spare)
vacuum readings that are scaled as 0000–FFFF representing 0 to 10.24 volts.

An array of 10 analog settings of window comparator limits is accessed via TypeCode 1. Each of
the 5 vacuum readings uses two limits, an upper and a lower limit, in that order. The scaling
matches that used for the vacuum readings. These limits can be read or set, either all at once or
individually. Note that setting limit values is accomplished via TypeCode 3.

An array of 5 status words, one per vacuum channel, is accessed via TypeCode 2. Each status word
has the following bit usage:

Bit# Meaning
0 Outside window HI (1=outside, 0=inside)
1 Outside window LO (1=outside, 0=inside)
2 First to trip (1=tripped first, 0=no trip or not first to trip)
3–15 spare

A single control word is accessed via TypeCode 4. It is used for resetting the trip latches. Only Bit#
0 of the word is used, where 1=reset latches for all channels, 0=do nothing.

Routine monitoring
The LA routinely reads data from the hardware, including the vacuum readings, the limits,

and the status words. It will keep only a single request active at a time. The analog readings and
the limits are assigned to local analog channels. The status readings are also assigned to analog
channels, but they are established as status words. The BADDR table will have addresses of the
bytes of the reading words, so that the status data becomes part of the binary data pool.

Setting of limits
The limits are accessible individually, and each is a separate Acnet device. (They have

nothing to do with normal front end monitoring for alarm conditions, but are only used by the
interlock hardware.) The CEC protocol allows access to each limit separately using the initial-
element and number-of-elements fields. The local application will routinely monitor the current
settings (in the ADATA table) of these limit “dummy” channels. (A setting to a dummy channel
merely updates the setting word in the ADATA entry; it does not talk to hardware.) It maintains a
reference set of limit settings internally, called the “standard” set here.) If there is a change, it
implies that a user is trying to modify the limit value, so the new limit value must be passed to the
hardware via the CEC protocol. Let there be a queue of such waiting limit changes. Each time the
normal data acquisition completes, the queue is checked for pending settings, and if there is one, it
is removed from the queue and a setting message is passed to the hardware box.

External access to limits
Since any computer can use the same CEC protocol to access the interlock hardware, we can

ask whether to allow other computers to make settings to the limit values. Normally, we would
not permit this at all, since the front end keeps nonvolatile copies of all settings, which are used
following a front end reset to remind one of the hardware setting values, since it normally does not
have nonvolatile memory itself. But in this case, the hardware includes a nonvolatile flash memory
that is used to maintain the latest limit settings in use. But if we are careful, we should be able to
permit such settings, at least most of the time.

The limits are assigned dummy channels in the front end system. The job of passing the new
setting value to the hardware rests with the LA. The LA can detect the need for such by looking for
changed values in the nonvolatile setting fields. When it sees a changed value, it installs/updates
an entry in a queue of waiting settings. It also updates the “standard” value so it won’t continue to
notice the same change.

When a reply is received from the hardware in response to the routine request for limit values, the
values received are compared against the standard set. If any is different, both the the standard
and nonvolatile records are updated. (This alerts the front end of a change in a limit that was
presumably made by another computer.) Then a scan is made for changes in the ADATA settings
against the standard set. Again, if a change is detected, a record of intent is placed into the queue,
and the standard set updated. The last step is to check the queue. If an entry is present, remove it
and send out the appropriate setting. When the acknowledgment is returned from the setting, or if
no settings had been sent, continue the routine monitoring.

Initialization
When the front end resets, it delivers the nonvolatile ADATA table settings to all analog

channels in order to update the hardware that may have just powered up. As stated earlier, the
limit channels are dummy settings to the front end. The interlock hardware has flash memory that
holds the current settings of all limits. When the LA is initialized, it should defer sending any
settings to the hardware until it has collected the set of limits from the hardware and assigned
them as the standard set and also updated the ADATA set. Only after this should the scanning of
changes seen via the ADATA entries commence. This scheme allows other computers the chance to
make changes in the limit settings whether TELV is running or not, and such changes will not be
altered when the front end resets, or when TELV is initialized.

Reset control
There is one control bit that can be set to reset the latches in the hardware. When a user

decides to perform such a reset, a dummy control bit is set. Again, the LA will have to notice this
bit set and queue up the appropriate setting for the hardware. The dummy bit will be reset so the
next scan will not see the bit still set and queue another setting. Nothing need be done to monitor
whether another computer performs such a reset.

Retries
When sending setting commands to the hardware, there is an acknowledgment expected. If

it is not received in a suitable time, another attempt should be made to deliver it before giving up.
Setting the same limit twice, in the case that the setting was successful but the acknowledgment
was lost, will not hurt anything. Even if a limit setting fails, the standard set of values is updated,
so the front end will not continue to send such settings forever. Again, if the hardware were
simply inaccessible or off, when it comes back up, the front end will first obtain the hardware
version of the limits to “get up to speed” before allowing any changes to be made. The retry is
used only for an unlikely network failure.

LA parameters
Here is the parameter layout for TELV:

TEL2 Vacuum Interlock p. 2

Prompt Size Meaning
ENABLE B 2 Enable Bit# for this LA
RESET B 2 Reset control Bit# (TypeCode 4)
VACUUM C 2 Chan 1 vacuum Chan# (TypeCode 0)
NVAC 2 #vacuum channels
LIMIT C 2 Chan 1 upper limit Chan# (TypeCode 1)
STATUS C 2 Chan 1 status Chan# (TypeCode 2)
IP ADDR 4 Target IP address

The number of limit channels is twice the number of vacuum channels, in pairs of (upper, lower).
The number of status channels is the same as the number of vacuum channels. This means we have
two spare words of parameters.

Post-implementation notes
The new LA TELV was written in C to run in the 68K-based IRM. It was organized according

to the above plan. It is installed in two nodes: 067D (TEL1) and 067B (TEL2), as described in Greg
Saewert’s TEL Vacuum Interlock Chassis document (revised 12/18/06). Along the way, it was found
that the acknowledgment, to a setting of the limits using TypeCode 3, is the same message
returned, including the data word that was sent. (Requests to read these same limit data use
TypeCode 1.) See the document by Greg Saewert and Brian Kramper, called The Compact Ethernet
Communication (CEC) Protocol.

The hardware uses flash memory to keep the latest limit setting values, so that it comes up after
power-on already using those values. But we learned that it takes about 700 ms to write to this
memory, during which time the hardware is incommunicado, although its vacuum digitizing and
limits checking logic continues to operate at 5 KHz via its FPGA. The software takes this into
account by inserting a 2 second delay after sending a setting message, which the hardware
acknowledges promptly with the same data value before starting its slow write access to flash
memory. The LA processes this reflected data so taht the act of making such a setting appears
promptly to the user.

Typical responses to data requests vary from 5–15 ms, making it easy to operate at 15 Hz. The
routine monitoring activity requests and receives vacuum readings on one cycle, limit values on
the next cycle, and status readings on the following cycle. A setting queue is used to set aside
setting commands until completion of the latest 3-cycle series of data requests. If the queue is not
empty, and extra cycle is inserted in the sequence in order to send the setting command to the
hardware; otherwise, the sequence repeats. The data is thus regularly updated at about 5 Hz.

Dummy channels are used to hold the vacuum, limit, and status data returned from the hardware.
Setting such a limit channel is noticed by TELV, causing it to queue up a setting. Provision for
another computer to set a limit is made by accepting a newly changed limit value as one that
should be adopted by the LA and the ADATA fields. Also, when the LA is initialized, the first set of
limits obtained from the hardware is accepted as the standard set.

A combined binary status word is built (for the convenience of Acnet) that includes the 3 status
bits from each of the up-to-5 vacuum devices.

Both setting actions and occurrences of errors are logged internally by the LA as diagnostic aids.
The LA currently uses 600 lines of source code and occupies about 4K bytes of executable code.

TEL2 Vacuum Interlock p. 3

